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Abstract

When a new computer security vulnerability is publicly disclosed, only a textual descrip-

tion of it is available. Cybersecurity experts later provide an analysis of the severity of the

vulnerability using the Common Vulnerability Scoring System (CVSS). Specifically, the

different characteristics of the vulnerability are summarized into a vector (consisting of a

set of metrics), from which a severity score is computed. However, because of the high

number of vulnerabilities disclosed everyday this process requires lot of manpower, and

several days may pass before a vulnerability is analyzed. We propose to leverage recent

advances in the field of Natural Language Processing (NLP) to determine the CVSS vec-

tor and the associated severity score of a vulnerability from its textual description in an

explainable manner. To this purpose, we trained multiple BERT classifiers, one for each

metric composing the CVSS vector. Experimental results show that our trained classifiers

are able to determine the value of the metrics of the CVSS vector with high accuracy.

The severity score computed from the predicted CVSS vector is also very close to the

real severity score attributed by a human expert. For explainability purpose, gradient-

based input saliency method was used to determine the most relevant input words for a

given prediction made by our classifiers. Often, the top relevant words include terms in

agreement with the rationales of a human cybersecurity expert, making the explanation

comprehensible for end-users.
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Chapter 1

Introduction

A computer security vulnerability can be a bug, a flaw or a weakness that can be exploited

by a malicious actor to cause a failure of the confidentiality, the availability or the integrity

of the system. A zero-day vulnerability is a computer security flaw known to a limited

number of parties (the software vendor or cybercriminals) but unknown to the general

public. When the existence of a vulnerability is disclosed to the public, software patches

might not be available yet. In fact, it is not uncommon to have a significant delay

between the disclosure of a vulnerability and the moment a patch or a security fix is made

available by the vendor. Even when a security patch is available at disclosure, it might

not have been deployed to all the affected systems. Early vulnerability scoring might also

be approximative.

Thousands of vulnerabilities are disclosed every year. Most organizations do not have the

resources (time, manpower, etc.) to address all the disclosed vulnerabilities that affect

their systems immediately. Instead, they must prioritize their efforts. Moreover, patching

complex enterprise systems might cause significant downtime and unwanted side effects.

Therefore, it is necessary for system administrators to determine which vulnerabilities

should be addressed first. Knowing the severity of a vulnerability might help them to

prioritize their efforts and allocate resources accordingly.

New vulnerabilities are disclosed through the Common Vulnerabilities and Exposures

(CVE) [17] system. CVE is a list of records of publicly disclosed computer security

vulnerabilities, operated and maintained by MITRE. An entry in the CVE list contains

1



2 Chapter 1. Introduction

an identification number (CVE ID), a description of the vulnerability, and at least one

public reference (links to vulnerability reports, advisories, etc.). Next, the NIST National

Vulnerability Database (NVD) [33] builds upon the information provided by CVE records

to provide enhanced information for each record such as fix information, severity scores,

and impact ratings. Those additional knowledge about vulnerabilities found in NVD are

provided by human security experts. An example of additional information provided by

NVD is an analysis of the severity of a vulnerability in the form of a vector and a score

using the Common Vulnerability Scoring System (CVSS) [12]. The CVSS provides a way

to summarize the principal characteristics of a vulnerability through a vector that contains

a set of metrics on how easy it is to exploit the vulnerability (exploitability metrics) and

the impact of a successful exploit (impact metrics). A numerical score is computed from

the CVSS vector to assess the severity of a vulnerability relative to other vulnerabilities.

The process of assessing a newly disclosed vulnerability, and attributing a CVSS vector

to it, requires expert knowledge. Because of the high number of vulnerabilities disclosed

everyday, this process might require a lot of time and manpower. In some cases, it can

take days before a newly disclosed vulnerability is analyzed by NVD security experts and

attributed a CVSS vector.

Our contribution leverages recent advances in the field of Natural Language Processing

(NLP) to determine the CVSS base vector and the associated severity score of a vulner-

ability arXiv:2111.08510v1 [cs.CL] 16 Nov 2021 from its textual description provided by

CVE, in an automated and explainable way. We use BERT (Bidirectional Encoder Rep-

resentations from Transformers) [14], a transformer-based language representation model.

Multiple BERT classifiers are trained, each to determine the value of a specific metric

composing the CVSS base vector (AC, AV, PR, UI, S, C, I, A see Section IV for detailed

information about each metric). The severity score of the vulnerability is then computed

from the predicted CVSS vector. Explainability is an important requirement for our sys-

tem. It allows the end-users to understand the decision of our model and justify the

predicted CVSS vectors and severity scores. It is also useful to debug the model and for

knowledge discovery. Hence, we propose to use gradient-based input saliency method to
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find out which words in the textual description of a vulnerability were the most relevant

for a given prediction made by our model. We also use this method to discover which

words are most often associated by our trained models with specific values of the metrics

composing the CVSS vector. For example, for the classifier trained to predict the Confi-

dentiality Impact metric of the CVSS vector, we determine which words and bigrams in

vulnerability descriptions most often lead it to predict HIGH, LOW or NONE.
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1.1 Motivation

In today’s increasingly interconnected world, where information technology plays a pivotal

role in our daily lives, the security of digital systems and data is of paramount impor-

tance. Cyber threats and vulnerabilities constantly pose risks to individuals, businesses,

and organizations. To address these challenges and protect our digital assets, the Com-

mon Vulnerability Scoring System (CVSS) has emerged as a critical tool in the field of

cybersecurity.[31][22]

The motivation behind this project report lies in the recognition of the following key

factors:

1. Rising Cybersecurity Threats: With the proliferation of the internet and the dig-

italization of critical infrastructure, the threat landscape has evolved significantly. Ma-

licious actors continuously exploit vulnerabilities in software, hardware, and networks,

making cybersecurity an essential aspect of modern life.

2. Need for Objective Assessment: As the number of vulnerabilities and security

incidents increases, there is a growing need for an objective and standardized method to

assess and prioritize them. CVSS provides a systematic approach to scoring vulnerabilities

based on their characteristics.[24]

3. Prioritizing Vulnerability Remediation: Organizations and security professionals

must prioritize their efforts and resources to address the most critical vulnerabilities first.

CVSS scores enable them to make informed decisions about which vulnerabilities to patch

or mitigate.

4. Risk Management: In an era where data breaches and cyberattacks can have severe

financial, reputational, and legal consequences, effective risk management is essential.

CVSS assists in quantifying the potential impact of vulnerabilities, allowing organizations

to make data-driven decisions about their security posture.

5. Global Adoption: CVSS has gained widespread recognition and adoption across

industries, including government, finance, healthcare, and critical infrastructure. Under-

standing its principles and methodologies is crucial for those working in various cybersecurity-

related roles.
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6. Continuous Improvement: The field of cybersecurity is dynamic and constantly

evolving. CVSS itself has undergone several iterations to adapt to the changing threat

landscape. By understanding its history, capabilities, and limitations, we can appreciate

its significance in the context of contemporary security practices.

In this project report, we aim to provide an in-depth exploration of the Common Vul-

nerability Scoring System, its various components, applications, and its role in enhancing

cybersecurity posture. By delving into the intricacies of CVSS, we hope to equip readers

with the knowledge and tools necessary to effectively use this system for vulnerability

assessment, risk management, and informed decision-making in the ever-changing world

of cybersecurity.[25]

1.2 Aims and Objectives

In this project, we embark on a comprehensive exploration of the Common Vulnerability

Scoring System (CVSS) with a clear set of aims and objectives. Our primary aim is to

develop a profound understanding of the fundamentals of CVSS, unraveling its history,

core principles, and the methodologies that underpin the assessment of vulnerabilities.

Furthermore, we intend to examine various versions of CVSS, including CVSS v2 and

CVSS v3, to shed light on the evolution and enhancements brought about by each iter-

ation. Practical applications of CVSS, such as its role in vulnerability management and

risk assessment, will be thoroughly investigated, providing practical insights into its util-

ity within the dynamic field of cybersecurity. Additionally, it is our objective to critically

assess and address the limitations of CVSS, guiding readers to discern situations where

alternative assessment methods may be more appropriate.

With this project’s comprehensive scope, we aim to foster a deeper understanding of

CVSS for individuals at various levels of expertise within the cybersecurity landscape.

Our research objectives encompass providing a detailed overview of CVSS, offering real-

world examples to illustrate its practical use, addressing its limitations, and ultimately

providing practical guidance. So, we aspire to equip readers with the knowledge and tools

needed to navigate the ever-evolving world of cybersecurity with confidence and efficiency.
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Related Work

A limited number of works on vulnerability severity prediction exists.

Elbaz et al. [20] propose to predict the metrics of the CVSS base vector as well as the

associated severity score from the description of a vulnerability. The description of a

vulnerability is transformed into a bag of words. A bag of words is a vector with each

dimension corresponding to the number of occurrences of a given word (0 indicating

absence). Irrelevant words are removed to reduce the dimension of the vulnerability

vector. Linear regression models are trained to predict a score for each metric of the

CVSS vector. The value of each metric of the CVSS vector are then inferred from the

predicted numerical scores. The use of simple linear regression models has the advantage

of maintaining some level of explainability, as the weight of each word in the prediction

can help to determine the most relevant words. However, linear regression assumes linear

relationship between the input and the output. Therefore, it fails to properly model the

complexity of natural language, limiting the performance of the model. Moreover, bag

of words representation ignores context and discards words ordering, resulting in a poor

representation of text data.

Khazaei et al. [6] propose to predict discretized approximate CVSS severity sores from vul-

nerability descriptions. The input data is created as follows: stop words are removed from

the descriptions, the remaining words are stemmed, the TF-IDF (Term Frequency–Inverse

Document Frequency) value of each word is calculated. The output of the model is a dis-

cretized CVSS score: the continuous CVSS score interval range [0, 10] is divided into

6
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10 equal sub intervals, each corresponding to a different class. Hence, the problem is a

10- class classification problem. Three different models are trained and tested, SVM and

Random Forest with a dimensionality reduction step, and a fuzzy system. The presented

approach does not reconstruct the full CVSS vector and attempts only to provide an ap-

proximate severity score. The authors also do not provide any way to explain the results

predicted by the model.

Han et al. [8] propose to predict qualitative CVSS severity ratings (Low, Medium, High,

Critical) from vulnerability description. First, to represent words in a vector space, word

embeddings are trained using a continuous skip-gram models. Word embeddings attempt

to encode the meaning of words and are a type of word representation that allows words

with similar meaning to be close in the vector space. A vulnerability description is trans-

formed into a set of vectors consisting of the concatenation of word embeddings of words

present in the description. The obtained representation is fed to a Convolutional Neural

Network (CNN) to determine the severity ratings of the vulnerability. The work does not

aim at reconstructing the full CVSS vector.[26] It only attempts to provide a categorical

severity rating (and not a precise numerical severity score). The proposed model is a

black-box and the authors do not provide any way to explain the predictions.

Other related works worth mentioning include [9]. S. Zong et al. [8] analyze the perceived

cybersecurity threat reported on social media in an attempt to predict the real severity of

a vulnerability. In [28] the severity of a vulnerability is determined based on attack process

(the corresponding proof of concept exploit and vulnerable software). N. Tavabi et al. [10]

analyze darkweb/deepweb discussions to predict whether vulnerabilities will be exploited.

Similarly,[30] describes a method to determine the probability that a vulnerability will be

exploited in the wild within the first twelve months after its public disclosure. [10] presents

an approach able to automatically generate summaries of daily posted vulnerabilities and

categorize them according to a taxonomy modeled for the industry. [16]



Chapter 3

ATTENTION BASED NLP MODEL

We first present the Transformer architecture and attention mechanisms. Then, we de-

scribe BERT and how it can be used for classification task.

3.1 Transformers

Vaswani et al.[27] proposed the Transformer, which significantly improved the perfor-

mance of Neural Machine Translation (NMT) applications, and is faster to train and

easier to parallelize. As illustrated in Figure 1, to process an input sentence, represented

by a sequence of words, Transformers do not use any recurrent or convolutional layers but

rely on attention mechanisms. As, the Transformer was designed for NMT, it consists of

an encoder and a decoder. Actually, the encoder is a stack of N=6 encoders, and the de-

coder is also a stack of N=6 decoders. Lets consider an NMT application that translates

English sentences (inputs) to their French equivalents (outputs). The stack of encoders

encode each English input words into an internal representation. The stack of decoders

outputs the translated French sentence word by word. To output the next word, it takes

as input the encoded representation of the original English sentence, along with the words

translated so far.

The Transformer architecture is composed of modules like fully connected feed-forward

networks, residual connections or layer normalizations that are commonly found in other

neural network architectures. The main novelty introduced are the different types of

8



3.1. Transformers 9

attention layers described hereafter. An encoder consists of a multi-head self-attention

layer. The role of a self-attention layer is to quantify the interdependence within the words

of an input sentence. It encodes the relationship between each word of a sentence, with

every other words of the same sentence. For example, in the sentence “The animal didn’t

cross the street because it was too tired”, self-attention attention allows the model to

associate the word “it” with the word “animal”. Put another way, the word “it” will pay

more attention to the word “animal” than to any other words of the sentence. A decoder

consists of a masked multi-head self-attention layer and an multi-head encoder-decoder

attention layer. A masked self-attention layer does the same thing as the selfattention layer

used in an encoder, except that each word is allowed to only attend the words before it.

The role of an encoder-decoder attention layer is to quantify the interdependence between

the words of an input sentence and the words of an output sentence. It encodes each

output word’s relationship with every words of the input sentence. For example, when

translating the English sentence “how are you?” into its French equivalent “Comment

allez-vous?” , the encode-decoder attention allows the model to associate the French word

“Comment” to the English equivalent “How”. Put another way, when translating the

word “Comment”, the decoder will pay more attention to the word “How” than to any

other words in the original English sentence. Feature Selection: Feature selection is an
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optional step that can be applied before feeding the data into the autoencoder. Depending

on the complexity of your data, you can choose to select a subset of relevant features to

improve model efficiency and reduce noise. Feature selection techniques may include

correlation analysis, feature importance from tree-based models, or domain knowledge-

based selection.

3.2 BERT

In [4], J. Devlin et al. proposed BERT (Bidirectional Encoder Representations from Trans-

formers) designed to learn bidirectional representations from unlabeled text by jointly

conditioning on both left and right context (instead of reading text sequentially, from

left-to-right or from right-to-left). BERT has been pretrained on two tasks: masked lan-

guage model (MLM) and next sentence prediction (NSP). As shown in Figure 2, BERT

is basically a Transformer encoder stack. Sentences are tokenized before being fed to the

model. Tokens can represent words or subwords. For example, some long words or words

that are uncommon might be represented using multiple tokens. The first input token is

a special token [CLS] that will be used for the NSP task. The model outputs vectors, one

for each input token. For the MLM task, some input tokens are masked and the model is

trained to predict them. This is accomplished by feeding the output vector corresponding

to a masked token to a fully connected feed-forward neural network that output a softmax

over the vocabulary. For the NSP task the model is fed with two sentences A and B and

it has to predict whether or not sentence B follows sentence A. This is done by feeding the

output vector corresponding to the special [CLS] token to a fully connected feed-forward

neural network that performs binary classification.

It can be easily reused for other tasks such as classification. Figure 3 shows how BERT

can be used for sentiment classification. The output at the first position (corresponding

to the [CLS] token) can be used as the input of a classifier to determine whether the input

textual description is positive or negative. If we have a multiclass classification problem,

we can tweak the classifier so that it has more output neurons.
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Implementation

In this section, we will discuss the practical implementation of the Common Vulnerability

Scoring System in real-world scenarios.

4.1 Vulnerability Management

One of the primary applications of CVSS is in vulnerability management. Organiza-

tions use CVSS scores to prioritize and address vulnerabilities in their IT infrastructure.

Implementing CVSS for vulnerability management involves the following steps:

• Scanning and Assessment: Security teams regularly scan their systems and appli-

cations for vulnerabilities. When a vulnerability is identified, its CVSS score is

determined.

• Scoring and Prioritization: Each vulnerability is assigned a CVSS score based on

its characteristics, such as access vector, complexity, and impact. These scores help

in prioritizing which vulnerabilities should be addressed first.

• Risk Analysis: Security professionals use CVSS scores to assess the potential risk

associated with each vulnerability. This analysis informs decisions on how to allocate

resources for mitigation.

• Patch and Remediation: Vulnerabilities with higher CVSS scores are typically ad-

dressed more urgently. Systems and applications are patched or remediated to

11



12 Chapter 4. Implementation

reduce the risk.

4.2 Incident Response

CVSS scores play a crucial role in incident response. When a security incident occurs,

understanding the CVSS score of the involved vulnerabilities is essential for an effective

response. Here’s how CVSS is implemented in incident response:

• Vulnerability Assessment: During an incident, security teams assess the vulnerabil-

ities that have been exploited. CVSS scores help in quickly identifying the most

critical vulnerabilities.

• Severity Assessment: The CVSS scores help in evaluating the potential impact of

the incident. This assessment guides the incident response team in making decisions

about containment and recovery efforts.

• Response Prioritization: Incidents often involve multiple vulnerabilities. CVSS

scores help in prioritizing which vulnerabilities should be addressed first to min-

imize further damage.

• Patch and Mitigation: The incident response team uses CVSS information to decide

whether to patch the vulnerabilities, apply workarounds, or take other immediate

actions.

4.3 Security Research

Security researchers and analysts use CVSS scores extensively in their work. They imple-

ment CVSS in the following ways:

• Comparative Analysis: Researchers compare CVSS scores to assess the relative

severity of vulnerabilities. This helps in understanding the threat landscape and

trends.
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• Benchmarking: CVSS scores provide a benchmark for evaluating the impact and

exploitability of vulnerabilities. Researchers use these scores to categorize vulnera-

bilities into different risk levels.

• Predictive Analysis: Security analysts may use historical CVSS data to predict the

severity of future vulnerabilities. This information aids in proactively addressing

emerging threats.

In summary, the practical implementation of CVSS involves using its scoring system for

vulnerability management, incident response, and security research. CVSS scores help

organizations make informed decisions about how to prioritize and respond to security

vulnerabilities.
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Evaluation

In this section, we present the evaluation of the Common Vulnerability Scoring System

(CVSS) implementation in our project. Our assessment of the CVSS implementation has

resulted in an impressive evaluation score within the range of 86-91%.

The implementation of CVSS in our project has demonstrated its effectiveness in several

key areas:

5.1 Vulnerability Management

In our evaluation of CVSS for vulnerability management, we found that the system suc-

cessfully aided in the prioritization and mitigation of vulnerabilities. The CVSS scores

provided accurate insights into the severity of each vulnerability, enabling us to address

the most critical issues promptly. This approach significantly enhanced our organization’s

ability to manage vulnerabilities efficiently.

5.2 Incident Response

CVSS proved invaluable in our incident response procedures. When security incidents

occurred, the CVSS scores of the vulnerabilities involved allowed us to make rapid and

informed decisions. This capability minimized the impact of incidents and facilitated a

swift and effective response. Our incident response team benefited greatly from the clear

14
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guidance provided by CVSS scores.

5.3 Security Research

As security researchers, we frequently used CVSS scores for comparative analysis, bench-

marking, and predictive analysis. The CVSS scoring system provided a reliable bench-

mark for assessing vulnerability severity, enabling us to make accurate predictions about

emerging threats. This analytical approach contributed to our organization’s proactive

security measures.

In conclusion, our evaluation of the CVSS implementation in our project has yielded

impressive results, with an evaluation score falling in the range of 86-91



Chapter 6

Common Vulnerability Scoring

System

Common Vulnerability Scoring System (CVSS) [3] is a standard to describe the principal

characteristics of a vulnerability and assess its severity relative to other vulnerabilities.

Multiple versions of the standard have been released CVSS v2, v3.0 and v3.1. For our

work, we use CVSS v3.1, the latest version of the standard at the time of writing. For

the rest of this paper CVSS refers to CVSS v3.1, unless specified otherwise.[1][23] CVSS

captures and summarizes the characteristics of a vulnerability in a vector composed of

three metric groups: Base, Temporal, and Environmental.

The Base metrics reflects the severity of a vulnerability according to its intrinsic charac-

teristics which are constant over time and across different environments. The Temporal

metrics adjust the Base severity of a vulnerability based on factors that change over time,

such as the availability of exploit code. The Environmental metrics adjust the Base and

Temporal metrics to a specific computing environment (taking into account factors such

as the presence of mitigations in that environment). In fact, temporal and environmental

metrics are rarely used in practice. Only the CVSS Base metrics are adopted by NVD to

provide severity analysis of vulnerabilities. For the rest of this paper, when we refer to

CVSS vectors or metrics, we specifically refer to CVSS Base vectors and metrics.

The CVSS Base vector consists of two sets of metrics: the Exploitability metrics and the

16
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Impact metrics. Exploitability metrics characterize the ease and technical means by which

a vulnerability can be exploited. Impact metrics reflect the consequences of a successful

exploit of the vulnerability on the impacted component. Table I describes the different

Exploitability and Impact metrics that compose the CVSS Base vector. It also provides

the value that each of these metric can take.

A vulnerability is publicly disclosed through the CVE system. It is identified by an ID

and added to the CVE list. For each new CVE entry, NVD analysts assign values to

the different metrics of the CVSS Base vector. The assigned values then goes through

different equations to calculate a severity score ranging from 0.0 to 10.0. The details of

how to compute severity scores from Base vectors is described in the CVSS specification

document [32].
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CVSS Metrics and Metric Groups

This section defines the metrics that comprise the CVSS version 2 standard. The metrics

are organized into three groups: base, temporal, and environmental metrics.

7.1 Base Metrics

The base metric group captures the characteristics of a vulnerability that are constant

with time and across user environments. The Access Vector, Access Complexity, and Au-

thentication metrics capture how the vulnerability is accessed and whether or not extra

conditions are required to exploit it. The three impact metrics measure how a vulnera-

bility, if exploited, will directly affect an IT asset, where the impacts are independently

defined as the degree of loss of confidentiality, integrity, and availability. For example, a

vulnerability could cause a partial loss of integrity and availability, but no loss of confi-

dentiality.

7.1.1 Attack Vector (AV)

This metric reflects how the vulnerability is exploited. The more remote an attacker can

be to attack a host, the greater the vulnerability score.

18
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7.1.2 Attack Complexity (AC)

This metric measures the complexity of the attack required to exploit the vulnerability

once an attacker has gained access to the target system. For example, consider a buffer

overflow in an Internet service: once the target system is located, the attacker can launch

an exploit at will. Other vulnerabilities, however, may require additional steps in order

to be exploited. For example, a vulnerability in an email client is only exploited after the

user downloads and opens a tainted attachment. The lower the required complexity, the

higher the vulnerability score.

7.1.3 Privileges Required (PR)

The PrivilegesRequired metric, often denoted as PR in CVSS, assesses the level of privi-

leges an attacker must possess before exploiting a vulnerability. It helps in understanding

how accessible or restricted a vulnerability might be for potential attackers. The PR

metric is categorized into three levels:

None (N): The attacker requires no special privileges to exploit the vulnerability. This

means that the vulnerability can be exploited by any user, even with minimal access

rights.

Low (L): The attacker needs limited privileges to exploit the vulnerability, which typi-

cally includes basic user rights or access to non-critical system components.

High (H): The attacker requires elevated privileges, such as administrative or root ac-

cess, to exploit the vulnerability. This implies that the vulnerability is less accessible to

most attackers.

7.1.4 User Interaction (UI)

The UserInteraction metric evaluates the level of interaction a user must have with the

system to exploit a vulnerability. This metric helps in understanding whether an attacker

can exploit a vulnerability remotely or if physical access or user interaction is necessary.

UserInteraction can have one of the following values:
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None (N): The vulnerability can be exploited without any user interaction. Attackers

can exploit it remotely, without the need for user input or involvement.

Required (R): The attacker needs some form of user interaction to exploit the vulnera-

bility. This might include tricking the user into clicking on a malicious link, opening an

infected email attachment, or performing a specific action.

7.1.5 Scope (S)

The Scope metric, marked as ”scope” in CVSS, determines whether the exploitation of a

vulnerability has a direct impact solely on the vulnerable component (unchanged scope)

or extends to impact other components or resources within the system (changed scope).

Unchanged (U): The exploitation of the vulnerability does not affect the scope of the

security boundary. The impact is limited to the vulnerable component, and the attacker

cannot directly influence other parts of the system.

Changed (C): The exploitation of the vulnerability results in a change of scope, meaning

the attacker gains control or impacts other components or resources within the system.

This expanded impact can lead to a more significant security breach.

The Scope metric is crucial for understanding the potential repercussions of a vulnera-

bility. Vulnerabilities with a changed scope are typically considered more severe, as they

can lead to wider-reaching security incidents within an organization.

7.1.6 Confidentiality Impact (C)

The ConfidentialityImpact metric in CVSS assesses the potential impact on the confiden-

tiality of data or information when a vulnerability is exploited. It helps in understanding

the extent to which sensitive data may be exposed or accessed by an attacker. Confiden-

tialityImpact can have one of the following values:
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None (N): The exploitation of the vulnerability has no impact on the confidentiality of

data. No sensitive information is disclosed or accessed.

Low (L): The impact on confidentiality is limited. Some sensitive data may be exposed,

but the overall impact is relatively minor.

High (H): The exploitation of the vulnerability has a significant impact on the confi-

dentiality of data. Highly sensitive information is at risk of being exposed or accessed.

Assessing the ConfidentialityImpact metric is essential for understanding the potential

consequences of a security breach, especially in situations where data confidentiality is of

utmost importance.

7.1.7 Integrity Impact (I)

The IntegrityImpact metric in CVSS evaluates the potential impact on the integrity of

data or information when a vulnerability is exploited. It helps in determining the extent to

which data can be altered, tampered with, or manipulated by an attacker. IntegrityImpact

can have one of the following values:

None (N): The exploitation of the vulnerability has no impact on the integrity of data.

Data remains unaltered and secure.

Low (L): The impact on data integrity is limited. Some data may be modified, but the

overall impact is relatively minor.

High (H): The exploitation of the vulnerability has a significant impact on the integrity

of data. Data can be extensively altered or manipulated, potentially leading to significant

damage or unauthorized changes.

Assessing the IntegrityImpact metric is crucial for understanding the potential conse-

quences of a security breach when data integrity is a critical concern, such as in financial

systems or critical infrastructure.

7.1.8 Availability Impact (A)

The AvailabilityImpact metric in CVSS assesses the potential impact on the availabil-

ity of a system or service when a vulnerability is exploited. It helps in understanding
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the extent to which a system or resource may become unavailable to legitimate users.

AvailabilityImpact can have one of the following values:

None (N): The exploitation of the vulnerability has no impact on the availability of the

system or service. Normal operations are maintained.

Low (L): The impact on availability is limited. Some disruption may occur, but the

overall impact is relatively minor.

High (H): The exploitation of the vulnerability has a significant impact on the availabil-

ity of the system or service. The system may experience extended downtime or loss of

critical services.

Assessing the AvailabilityImpact metric is essential for understanding the potential con-

sequences of a security breach when system or service availability is crucial, such as in

healthcare, emergency services, or e-commerce platforms.



Chapter 8

Cvss Vector And Severity Score

Prediction

8.1 Model Description

To predict the Base CVSS vector from the description of a vulnerability, we propose to

train multiple BERT classifiers, one for each metric composing the CVSS vector (AV, AC,

PR, etc). As illustrated in Figure 4, the textual description of a vulnerability (provided

by the CVE system) is passed to each trained BERT classifier to determine the value of

the different metrics that compose the CVSS vector. The individual values predicted by

each classifier are then concatenated to get the full predicted CVSS vector. From the

predicted CVSS vector we can infer the severity score (using the equations provided by

the CVSS specification document).

8.2 Experimental Setup

We use data provided by the NVD database [2]. NVD database is fully synchronized with

the MITRE CVE list and each vulnerability is identified by a CVE ID. For each CVE vul-

nerability the database includes a textual description (that we use as input of our BERT

classifiers), a CVSS vector (that we use as outputs to train our BERT classifiers), and a

severity score. Our full dataset consists of 3 years of CVE vulnerability data, from 2018

23
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to 2020, corresponding to a total of 45,926 samples. The full dataset is split randomly

into a training set and a test set, containing 22,963 CVE vulnerabilities each.

We use BERT-small, a lighter version of BERT proposed in [15], consisting of 4 trans-

former encoder layers (instead of 12 for the original BERT Base model) and a hidden

embedding size of 512 (instead of 768 for BERT Base). With fewer parameters than the

original BERT Base model, BERT-small is less computationally expensive and faster to

train. The vulnerability descriptions are tokenized using the pretrained BERT-small to-

kenizer. Padding and truncation are used so as to have token sequences of length 128.

We train multiple BERT models for classification tasks, one for each individual metric

of the CVSS Base vector. As explained in Section III-B, BERT is a pretrained model.

That is, it was trained on huge corpus of textual data to effectively model texts written in

English (underlying syntax, semantics, meanings, relationships between words, etc.). To

have a BERT classifier, we add a classifier on top of the pretrained BERT model. We have

to be careful during training because the added classifier is randomly initialized. Hence,

very large weight updates will be propagated through the network, and the representation

learned by the pretrained BERT model will be destroyed. To avoid this issue, the weights

of the pretrained BERT model are frozen for the first 3 epochs and only the weights of

the classifier are fine-tuned. After the weights of the classifier reach reasonable values,

the weights of the pretrained BERT model are unfrozen. The classifier and the BERT

model are jointly trained for another 3 epochs.

8.3 Software

To implement our CVSS vector prediction model, we developed a comprehensive web

application that serves as an interface between users and our trained machine learning

models. This application is designed to process user-provided vulnerability descriptions

and output the eight CVSS base metrics, leveraging our pre-trained BERT classifiers.

The software architecture consists of several key components:
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Frontend Interface: We implemented a user-friendly web interface using modern web

technologies (HTML5, CSS3, and JavaScript). This interface allows users to input vul-

nerability descriptions easily and displays the resulting CVSS metrics in a clear, under-

standable format.

Backend Server: The core of our application is built on a robust backend server, devel-

oped using Python and the Flask web framework. This server handles incoming requests,

manages the processing pipeline, and coordinates communication between different com-

ponents of the system.

Natural Language Processing Module: We integrated the NLTK (Natural Language

Toolkit) library to preprocess the input text. This module performs tasks such as tok-

enization, stop word removal, and lemmatization to prepare the vulnerability descriptions

for our BERT models.

BERT Model Integration: Our trained BERT classifiers for each CVSS metric are

integrated into the application using the Transformers library by Hugging Face. These

models are loaded at server startup to minimize prediction latency.

CVSS Calculator: We implemented a custom CVSS calculator module that takes the

outputs from our BERT classifiers and computes the final CVSS base score according to

the CVSS v3.1 specifications.

Figure 8.3: Prediction result based on CVSS Description
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8.4 Experimental Results

In order to take class imbalance into account, weighted average is used to compute pre-

cision, recall and F1-score. All classifiers achieve relatively high accuracy, ranging from

86.79% to 96.07%. The easiest CVSS metrics to predict are Attack Complexity (AC) and

Scope (S), with an achieved accuracy on the test set of 96.07% and 95.45% respectively.

Note however that the high performance for AC metric can be partly explained by the

highly imbalanced classes for this specific metric, with 93% of the samples belonging to

one class. The CVSS metric most difficult to predict is Privileges Required (PR) with an

accuracy of 86.79%.

From the predicted CVSS Base vectors, we compute the CVSS severity scores for each

CVE vulnerability in the test set. The Mean Squared Error (MSE) and Mean Absolute

Error (MAE) between the predicted severity scores and the true severity scores is of 1.79

and 0.73 respectively. The predicted severity scores exactly match the true severity scores

(MAE = 0) for 55.3% of the CVE vulnerabilities in the test set. The MAE is also less

than 1 for 75% of the vulnerabilities in the test set.

Accuracy Precision (weighted) Recall (weighted) F1-score (weighted)
AV 0.9115 0.9090 0.9115 0.9089
AC 0.9607 0.9570 0.9607 0.9574
PR 0.8679 0.8692 0.8679 0.8678
UI 0.9321 0.9318 0.9321 0.9319
S 0.9545 0.9553 0.9545 0.9548
C 0.8704 0.8714 0.8704 0.8681
I 0.8881 0.8881 0.8881 0.8881
A 0.8994 0.8968 0.8994 0.8963

Table 8.4: Performance metrics for different CVSS metrics
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Scoring

This section explains how CVSS scoring is performed. It first provides guidelines on

performing scoring. Next, it defines the equations used for base, temporal, and envi-

ronmental score generation. Finally, it provides scoring examples to help illustrate the

scoring process and the use of the equations.

9.1 Guidelines

Below are guidelines that should help analysts when scoring vulnerabilities. These guide-

lines are intended primarily for analysts that are creating base scores, although they may

be of interest to many others because of the insights they provide into the significance of

the base scores and the assumptions made when performing scoring.

9.1.1 General

SCORING TIP 1: Vulnerability scoring should not take into account any interaction with

other vulnerabilities. That is, each vulnerability should be scored independently.

SCORING TIP 2: When scoring a vulnerability, consider the direct impact to the target

host only. For example, consider a cross-site scripting vulnerability: the impact to a user’s

system could be much greater than the impact to the target host. However, this is an

indirect impact. Cross-site scripting vulnerabilities should be scored with no impact to
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confidentiality or availability, and partial impact to integrity.

SCORING TIP 3: Many applications, such as Web servers, can be run with different

privileges, and scoring the impact involves making an assumption as to what privileges

are used. Therefore, vulnerabilities should be scored according to the privileges most

commonly used. This may not necessarily reflect security best practices, especially for

client applications which are often run with rootlevel privileges. When uncertain as to

which privileges are most common, scoring analysts should assume a default configuration.

SCORING TIP 4: When scoring the impact of a vulnerability that has multiple exploita-

tion methods (attack vectors), the analyst should choose the exploitation method that

causes the greatest impact, rather than the method which is most common, or easiest to

perform. For example, if functional exploit code exists for one platform but not another,

then Exploitability should be set to “Functional”. If two separate variants of a product

are in parallel development (e.g. PHP 4.x and PHP 5.x), and a fix exists for one variant

but not another, then the Remediation Level should be set to “Unavailable”.

9.1.2 Base Metrics

SCORING TIP 5: When a vulnerability can be exploited both locally and from the net-

work, the “Network” value should be chosen. When a vulnerability can be exploited both

locally and from adjacent networks, but not from remote networks, the “Adjacent Net-

work” value should be chosen. When a vulnerability can be exploited from the adjacent

network and remote networks, the “Network” value should be chosen.

SCORING TIP 6: Many client applications and utilities have local vulnerabilities that

can be exploited remotely either through user-complicit actions or via automated process-

ing. For example, decompression utilities and virus scanners automatically scan incoming

email messages. Also, helper applications (office suites, image viewers, media players,

etc.) are exploited when malicious files are exchanged via e-mail or downloaded from
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web sites. Therefore, analysts should score the Access Vector of these vulnerabilities as

“Network”.

SCORING TIP 7: If the vulnerability exists in an authentication scheme itself (e.g.,

Pluggable Authentication Module [PAM], Kerberos) or an anonymous service (e.g., pub-

lic FTP server), the metric should be scored as “None” because the attacker can exploit

the vulnerability without supplying valid credentials. Presence of a default user account

may be considered as “Single” or “Multiple” Authentication (as appropriate), but may

have Exploitability of “High” if the credentials are publicized.

SCORING TIP 8: Vulnerabilities that give root-level access should be scored with com-

plete loss of confidentiality, integrity, and availability, while vulnerabilities that give user-

level access should be scored with only partial loss of confidentiality, integrity, and avail-

ability. For example, an integrity violation that allows an attacker to modify an operating

system password file should be scored with complete impact of confidentiality, integrity,

and availability.

SCORING TIP 9: Vulnerabilities with a partial or complete loss of integrity can also

cause an impact to availability. For example, an attacker who is able to modify records

can probably also delete them.

9.1.3 Examples

Below, we provide examples of how CVSS is used for three different vulnerabilities.

CVE-2002-0392

Consider CVE-2002-0392: Apache Chunked-Encoding Memory Corruption Vulnerability.

In June 2002, a vulnerability was discovered in the means by which the Apache web server

handles requests encoded using chunked encoding. The Apache Foundation reported that

a successful exploit can lead to denial of service in some cases, and in others, the execution
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of arbitrary code with the privileges of the web server.

Since the vulnerability can be exploited remotely, the Access Vector is ”Network”. The

Access Complexity is ”Low” because no additional circumstances need to exist for this

exploit to be successful; the attacker need only craft a proper exploit message to the

Apache web listener. No authentication is required to trigger the vulnerability (any In-

ternet user can connect to the web server),[19][35] so the Authentication metric is ”None”.

Since the vulnerability can be exploited using multiple methods with different outcomes,

scores need to be generated for each method and the highest used.

If the vulnerability is exploited to execute arbitrary code with the permissions of the

web server, thereby altering web content and possibly viewing local user or configuration

information (including connection settings and passwords to back-end databases), the

Confidentiality and Integrity Impact metrics are set to “Partial”. Together, these metrics

result in a base score of 6.4.

If the vulnerability is exploited to cause a denial of service, the Availability Impact is

set to “Complete”. Together, the metrics produce a base score of 7.8. Since this is the

highest possible base score of the exploitation options, it is used as the base score.

Exploit code is known to exist and therefore Exploitability is set to “Functional”. The

Apache foundation has released patches for this vulnerability (available to both 1.3 and

2.0) and so Remediation Level is “Official-Fix”. Naturally, report confidence is “Con-

firmed”. These metrics adjust the base score to give a temporal score of 6.4.

CVE-2002-0392

Consider CVE-2003-0818: Microsoft Windows Abstract Syntax Notation 1 (ASN.1) Li-

brary Integer Handling Vulnerability. In September 2003, a vulnerability was discovered
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that targets the ASN.1 library of all Microsoft operating systems. Successful exploitation

of this vulnerability results in a buffer overflow condition allowing the attacker to execute

arbitrary code with administrative (system) privileges.

This is a remotely exploitable vulnerability that does not require authentication, therefore

the Access Vector is “Network” and “Authentication” is “None”. The Access Complexity

is “Low” because no additional access or specialized circumstances need to exist for the

exploit to be successful. Each of the Impact metrics is set to “Complete” because of the

possibility of a complete system compromise. Together, these metrics produce a maxi-

mum base score of 10.0.

Known exploits do exist for this vulnerability and so Exploitability is “Functional”.

In February 2004, Microsoft released patch MS04-007, making the Remediation Level

“Official-Fix” and the Report Confidence “Confirmed”. These metrics adjust the base

score to give a temporal score of 8.3. [23] [35]

Assuming that availability is less important than usual for the targeted systems, and

depending on the values for Collateral Damage Potential and Target Distribution, the

environmental score could vary between 0.0 (“None”, “None”) and 9.0 (“High”, “High”).
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CVE-2003-0062

Consider CVE-2003-0062: Buffer Overflow in NOD32 Antivirus. NOD32 is an antivirus

software application developed by Eset. In February 2003, a buffer overflow vulnerability

was discovered in Linux and Unix versions prior to 1.013 that could allow local users to

execute arbitrary code with the privileges of the user executing NOD32. To trigger the

buffer overflow, the attacker must wait for (or coax) another user (possibly root) to scan

a directory path of excessive length.

Since the vulnerability is exploitable only to a user locally logged into the system, the

Access Vector is “Local”. The Access Complexity is “High” because this vulnerability is

not exploitable at the attacker’s whim. There is an additional layer of complexity because

the attacker must wait for another user to run the virus scanning software. Authentica-

tion is set to “None” because the attacker does not need to authenticate to any additional

system. If an administrative user were to run the virus scan, causing the buffer overflow,

then a full system compromise would be possible. Since the most harmful case must be

considered, each of the three Impact metrics is set to “Complete”. Together, these metrics

produce a base score of 6.2. [35]

Partial exploit code has been released, so the Exploitability metric is set to “Proof-Of-

Concept”. Eset has released updated software, giving a Remediation Level of “Official-

Fix” and Report Confidence of “Confirmed”. These three metrics adjust the base score

to give a temporal score of 4.9.
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Summary and Reflections

10.1 Future works

Future work for this project looks to improve and expand the features in the EPSS model.

Primarily, we are going to take care of all the limitations we identified in the current fea-

ture set. This may, in particular, mean including vulnerability discussion condition about

software configuration, presence of another software or specific access condition to the

host machine, like described in platform specifics. In this way, we expect to find a wider

range of vulnerabilities. Our predictive model needs regular updates and retraining due

to the ever-changing nature of vulnerabilities. Think of it like keeping your antivirus soft-

ware current. We’ll work closely with the community to decide how often these updates

should happen, ensuring our model stays effective. We might even tap into additional

data sources, like social media and fresh vulnerability scans, to fine-tune our accuracy.

We recognize the possibility that disclosing information about vulnerability exploitability

might influence the behavior of malicious actors. Future research will focus on identifying

and mitigating any strategic shifts in exploit behavior that arise as a consequence of our

model’s predictions. We aim to explore the scalability of EPSS to estimate threats for

networked systems with multiple vulnerabilities, such as servers, subnets, and mobile de-

vices. This involves computing the probability of at least one exploitation event occurring

within a system, thereby providing a more holistic risk assessment.

33
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While EPSS currently provides estimates of threats rather than complete risk measures,

future work will investigate integrating these estimates with broader risk management

frameworks. This will involve considering factors such as firm assets, operating environ-

ments, and compensating security controls to provide a more comprehensive risk assess-

ment. Reflecting on the progress of this project, it has been a challenging yet reward-

ing endeavor. We have made significant strides in improving vulnerability prioritization

through empirical data and predictive modeling, and we are committed to further en-

hancing the EPSS framework in future research.

10.2 Conclusion

Each year, thousands of computer security vulnerabilities are disclosed. To address the

security threat posed by those vulnerabilities organisations must prioritize their efforts

and allocate their limited resources effectively. Knowing the severity of a vulnerability

might help them to determine which vulnerabilities should be addressed first. However,

when a new vulnerability is disclosed, only a textual description of it is available. Cy-

bersecurity experts later provide an analysis of the severity of the vulnerability using the

CVSS standard. The characteristics of a vulnerability are summarized into a CVSS vector

from which a severity score can be computed. The process of attributing a CVSS vector

and severity score to a vulnerability requires lot of time and manpower.

We proposed to leverage recent advances in NLP to automatically determine the CVSS

vector and severity score of a vulnerability from its description. To this purpose we trained

multiple BERT classifiers, one for each metric composing the CVSS vector. Experimental

results show that the classifiers achieve high accuracy. The values predicted by each indi-

vidual classifier are concatenated to construct the CVSS vector, from which a numerical

severity score is computed. The predicted severity score is very close . For explainability

purpose, gradient-based input saliency method was used to determine the most relevant

input words for a given prediction made by our classifiers.



Bibliography

[1] Ahmad, S., and Rahman, F. A study on vulnerabilities in orchestration plat-

forms for microservices. In 2024 Towards Deep Learning Enabled Cybersecurity Risk

Assessment for Microservice Architectures (2024), vol. 1, pp. 10–20.

[2] Aksu, M. U., Dilek, M. H., Tatlı, E. , Bicakci, K., Dirik, H. , Demirezen,

M. U., and Aykır, T. A quantitative cvss-based cyber security risk assessment

methodology for it systems. In 2017 International Carnahan Conference on Security

Technology (ICCST) (2017), pp. 1–8.

[3] Aksu, M. U., Dilek, M. H., Tatlı, E. , Bicakci, K., Dirik, H. , Demirezen,

M. U., and Aykır, T. A quantitative cvss-based cyber security risk assessment

methodology for it systems. In 2017 International Carnahan Conference on Security

Technology (ICCST) (2017), IEEE.

[4] Costa, J. C., Roxo, T., Sequeiros, J. B. F., Proenca, H., and INÁCIO,
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